Cooperative Multi-Agent Reinforcement Learning With Approximate Model Learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement Learning in Cooperative Multi–Agent Systems

Reinforcement Learning is used in cooperative multi–agent systems differently for various problems. We provide a review on learning algorithms used for repeated common–payoff games, and stochastic general– sum games. Then these learning algorithms is compared with another algorithm for the credit assignment problem that attempts to correctly assign agents the awards that they deserve.

متن کامل

Multi-Agent Reinforcement Learning

This thesis presents a novel approach to provide adaptive mechanisms to detect and categorise Flooding-Base DoS (FBDoS) and Flooding-Base DDoS (FBDDoS) attacks. These attacks are generally based on a flood of packets with the intention of overfilling key resources of the target, and today the attacks have the capability to disrupt networks of almost any size. To address this problem we propose ...

متن کامل

Cooperative Multi-agent Control Using Deep Reinforcement Learning

This work considers the problem of learning cooperative policies in complex, partially observable domains without explicit communication. We extend three classes of single-agent deep reinforcement learning algorithms based on policy gradient, temporal-difference error, and actor-critic methods to cooperative multi-agent systems. We introduce a set of cooperative control tasks that includes task...

متن کامل

Argumentation Accelerated Reinforcement Learning for Cooperative Multi-Agent Systems

Multi-Agent Learning is a complex problem, especially in real-time systems. We address this problem by introducing Argumentation Accelerated Reinforcement Learning (AARL), which provides a methodology for defining heuristics, represented by arguments, and incorporates these heuristics into Reinforcement Learning (RL) by using reward shaping. We define AARL via argumentation and prove that it ca...

متن کامل

Cooperative Multi-Agent Reinforcement Learning for Low-Level Wireless Communication

Traditional radio systems are strictly co-designed on the lower levels of the OSI stack for compatibility and efficiency. Although this has enabled the success of radio communications, it has also introduced lengthy standardization processes and imposed static allocation of the radio spectrum. Various initiatives have been undertaken by the research community to tackle the problem of artificial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.3007219